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ABSTRACT

Data from two simulations on particle limited grain growth are reported. For 3D sirulations the
same type of strong correlation between narticles and grain boundaries previously found in 2D
siniulations was found with the limiting grain size scaling in 3D with (1/)03!. Very much
higher particle correlation with grain boundaries and particularly with grain corners was obtained
than expected for the random microstructure. The size distribution of the pinned grain structures
showed considerable differences from that of dynamically evolving single phase structures -
notably an absence of small grains with radii less than 0.3 <R> and the presence of a few large
grains in the pinned samples. In 2D simulations from a finite starting grain size it was shown
that the limitin grain size is strongly modified by the starting grain size which may explain at
least pert of the wide scatter in pinned grain sizes reported from experimental studies. It is
suggested that normal grain growth ceases when the sniallest grains in the size distribution can
no longer shrink. Finally limited new experimental data on grain growth with a stable
dispersion in an Al-Fe alloy is reported. This data is, at least partially, in agreement with the
simulation results but most strikingly shows a ready transition to abnormal grain growth at low
volume fraction of second phase particles. A simple model for this effect 1s proposed - based
on the Zener analysis but applied only to abnormal grain growth into a fine grain structure pinned
to a small grain size in the maner suggested by the simulations.

1. INTRODUCTION

In the 7th Riso Conference, Anderson/1986) described the Monte Carlo simulation technique
used to study grain growth. In the early studies, Anderson et al.(1984), Srolovitz et al.(1984a)
established how, by use of a 2 dimensional hexagonal lattice, 2D grain growth could be
effectively simulated both with respect to kinetics and to the microstructure including the steady
state grain size disiribution. Subsequent studies by Grest et al.(1988), using a larger lattice ard

in consequence a lon?cr riods of grain growth, established the expected kinetics, cq.1b with
n=(0.49 £ 0.02. The fundamental equation is:

<R>M (1) = <R>M(0) + Bt (1;
Which at long times, <R>™ (1) >> <R>™ (0), reduces to the usually quoted form:

<R>({t) = B't" (la)



<R> (t) is the mean grain radius at time t. As has been repeatedly shown (Atkinson 1988,
Mullins and Vinals1989) in interface controlled reactions involving growth of a "self similar"
structure, such as 2 or 3D grain growth, n should b¢ 0.5. In an important recent extension the
computer simulation technique was extended to 3D simulation, Anderson et al. (1985, 1989a).
They showed in 3D simulations very similar results, initially n = 0.4840.04 but with a larger
lattice ar longer times n = 0.47% 0.02 was obtained. As discussed by Anderson et al. (1986
and1989a) the simulations appear to match not only the analytical kinetic behavior but also to
match experimental observations of the grain size distributions and the grain topology.

The same type of method has been used to study recrystallization in 2D simulations for both
homogeneous nucleation ( Srolovitz et al. 1986) and heterogeneous nucleation (Srolovitz et al.
1988). The simulation of homogeneously nucleated recrystallization showed the correct form of
the Johnson-Mehl-Avrami-Kolmogorov(JMAK) kinetics. Doherty et al.(1986) in the 7th Riso
Syinposium used the same type of simulation to explore the problein of of the usual failure to
observe the expected JMAK kinetics for recrystallization. It was found that if the stored energy
was varied from grain to grain then reduced JMAK exponents were found - very similar to those
seen in experimenial studies of plastically deformed metals. Further studies by Rollett et
al.(1989a) confirmed these results and directly demonstrated that the crucial assumption of the
JMAK analysis of nucleation and growth reactions, eq.2, while valid for uniform stored energies
was seriously in error for non-uniform stored energy.
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F is the true volume fraction of transfomed material and Fe is the extended volume fraction - the
volume occupied by the new structure if no correction is made for impingement of the growing
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new grains. Fig.l1 shows the close agreement o eq. 2 for uniform stored energy where the
assumptions leading to eq.2, random nucleation and spztially constant growth, are found. Fig.2
however shows that the with non uniform stored energy the impingement correction is grossly
underestimated by eq.2. The physical meaning of this is that in regions of higher stored energy
more grains aré nucleated and they grow faster into the more deformed grains than elsewhere.
As a consequence there is much more impingement occuring amongst these clustered grains than
is predicted for a more random structure at the same fraction recrystallized. Such clustering of
nuclei in selected grains in moderately deformed pure metals is commonly observed as discussed
by Doherty et al.(1986) and Roliett et al.(1989a). Very recently Hutchinson et al.(1989)
demonstrated the validity of this concept by elegant residual stored energy measurements during
recrystallization. In heavily rolled coarse and fine grain sized copper over 50% of the stored
energy v-as released while the first 20% of the deformed material recrystallized.

In both studies of normal grain growth in single phase materials and of recrystallization the
computer simulations seem to match the current analytical models very closely provided that the
assumptions of the simulations and the analysis were the same. The recrystallization studies
also showed that the simulations could match experimental conditions rather well, at least
qualitatively, in much more complex situations. These close matches ler.d some confidence to
the validity of the simulations even though there may remain possible doubts about the validity of
the simulation in different circumstances - in all cases simulation like analysis only provides a
tasis for suggesting and analysing actual experiments.

In the situation of grain growth in particle containing materials the simulation results have been
found to give significantly different result from the standard analytical theory and these results
including recent new results will be described here and compared with previous experiments and
with some preliminary new experimental studies suggested by the simulations.

2. CLASSICAL PARTICLE LIMITED GRAIN GROWTH

The classical analysis was provided by Zener though published by Smith(1948). The subject has
been reviewed many times, see Ashby(1980) Nes et 21.(1985) Hillert(1988) and only the major
assumptions and resulis need be given here. When a grain boundary migrates onto an spherical
incoherent particle of radius r ( that is one whose interfacial energy is unchanged by passage of a
high angle grain boundary) the system reduces its energy by aE:

AE = mry 3)

vis the grain boundary energy. To move the boundary off the particle a force F must be applied
and this force achieves a maximum value given by:

F=nry 4

If it is assumed that the boundary and the particles are uncorrelated in position, then the number
of particles on unit area of the boundary N is:

N=3f/2nr2 (&)

Where f is the volume fraction of particles.  The product of N and F gives the Zener drag, Z,

provided by the particles against the migration of a grain boundary moving under a driving
pressure P,

Z= NF= 3fy/2r (6)

By soap film simulations and by studies of recrystallization in particle containing alloys with a
stored energy P that fell with distance( from a hardness indent) Ashby et al. (1969) were able to
confimm to a surﬁrising accuracy the validity of this simple model.  The recrystallized grain
boundaries and the pressurised soap films were halted when P = Z. More detailed analyses, see
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Gladman (1966), Louat (1982), Nes et al.(1985), Hillert(1988), only changed slightly the results
of the simple Zener analysis. There scems at present no reason to doubt the validity of the
analysis for migration of a high angle grain boundary between two grains when driven by a
pressure P that arises from energy differences between the grains. Current Monte Carlo
simulations of recrystallization in 2 dimensional (2D) particle containing structures by Rollett et
al. (1989b) seems to support the conciusion that when Z < P in recrystallization the bounduries
can migrate past the particles with little difficulty and that there is a random correlation of
particles with boundaries so that, the 2D equivalent of, eq. 5 is valid for recrystallization.

A very different result appears however when boundary migration is occuring during grain
growth - that is when boundaries experience a pressure P determined by their own radius of
curvature, R..

P= 2y/R¢ @)

Assuming as in the Zener analysis that grain growth wi!l cease when the mean radius of
curvature ( taken in the simple model to be equal to the mean grain size <D>) increases until Z =
P - this gives the much quoted Zener result:

<D> = 4r/3f (8)

Again more detailed analysis using the same assumptions only effects this result in a rather
marginal way, see Gladman(1966), Louat(1982), Nes et al.(1985), Hillert(1988). An
alternative point of view has been expressed, apparently independently, by various investigators:
Haroun and Budworth(1968), Anand and Gurland(1975), Hellman and Hillert(1975),
Hutchinson and Duggan(1978) and Doherty et al.(1987). In this agproach it was either
observed directly or predicted that the majority of particles will lie on boundaries between 2
grains or at edges between 3 grains or at comers between 4 grains. Under these circumstances
the number density of particles on unit area of grain boundary is much larger than predicted by
eq.5 and the limiting grain size is then found to vary with the volume fraction of particles as:

Particles at boundaties: <D> = kr/ ()05 )
or at comers: <D> = k'r/(f)033 (10)

Experimental data supporting eq. 9 has been provided by Anand and Gurland(1975) and
Hellman and Hillert(1975) in quench and tempered steels and to a more sophisticated version of
€q. 9 taking into account the dispersion of particle radii for grain sizes in sintered calcium
flouride by Haroun(1980). Data that gave plausible fit to eq. 10 has been provided by
Olgaard and Evans (1986) using their own data For hot pressed calcite and from a reanalysis of a
large range of data from both metallic and ceramic materials. The summarized data from the
Olgaard and Evans review is shown as fig.3, in which log (D/d) is plotted against log f and trend
lines of slopes 1:1 (eq.8), 1:2 (eq.9) and 1:3 (eq.10) are given. Fig.3 indicates several striking
features which include:
i) The very large scatter, especially in the ceromic data

Note that "cal” is calcite, Lange and Hirlinger(1984) and Green(1982) are for alumina, in these
cases the mixed ceramic powders are blended and hot pressed.  The metal data covers
recrystallized Al containing fine alumina, Tweed et al. (1953) ard the examples of quench and
tempered steel, Anand and Gurland (1975) and Hellman and Hillert (1975).
ii) The tendency for almost all individual pieces of data (except that of Hsu) to show a slope
closer to eqs 9 and 10 than the 1:1 slope of eq.8. In the table of data published by Olgaard and
Evans(1986) this is shown more clearly. However it should be noted that additional data by
Koul and Pickering(1982) on grain growth in recrystallized austenitic steels also fits quite
closely the results of Hsu (1984).
iii) The simple Zener result clearly fails at very low values of f - the lowest D/d value in Al-
Alx(iy (Tweed et al.1983) falls nearly two orders of magnitude below the prediction of eq.8.
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Fig. 3. Log of the ratio of the pinned grain size to the particle diameter
versus log of the volume fraction of second phasc particles. Lines of
slopes 1:1, 1:2 and 1:2 are plotted. From Olgaard and Evans (1986).

It is for this problem that the Monte Carlo simulations are of great value. In a crucial paper
Srolovitz et al. (1984b) studied grain growth in 2D with a range of volume fractions between
0.05 and 0.005. The initial "grain size" was a lattice point, the same size as the inert particle,
and for much of the growth time the mean growth rate showed no effect of the particles - not
surprisingly since most grains were not in contact with any particles. As the grain size reached

the approximate interparticle spacing, S = ( 1/f )0%, the growth rate slowed down and finally
halted at a mean grain radius <R> given by:

<R> = (1.700.06) r / ()05 )]

The fraction of particles on grain boundaries, ¢, was found to be close to 1 so that, as discussed
by Doher:ly et al.(1987), under these circumstances eq.9 should be the expected result using the
Zener an gsis for 2D grain growth. Srolovitz et al. (1984b) had themselves derived eq. 11 on
the simple basis that in 2D particles are extremely effective in removing the curvature required for
grain growth, so that when each grain is in contact with 3 particles, all grain growth ceases.
This immediately gives eq.11 as <R> = (3)%5r/ (05, Hillert(1988) obtained the identical
result - even an isolated triangular grain with 3 particles at its coiners will not vanish, fig. 4.
However in the same paper the problem of 3D grain growth in the presence of particles was still
discussed in the original Zener manner - as a drag on & migrating boundary surface between two
grains and not in terms the influence of particles in removing curvature - the analysis which has
proved to be so useful in the 2D case.

To gain further insight intu this problems two further types of simulation have been run and -vill
be briefly described here: A 3D simulation run from an initial grain size of one lattice point -
that is with the initial grain size very much smaller than the interparticle spacing, initial results
from that study have been already published in outline, Anderson et al (1989b).  In the second
type of simulation, run so far only in 2D, grains were initially grown without particles to a
mean ared <A>¢ >> 4, the particle and lattice site area. At this point different volume fractions
of varticles were randomly introduced into the microstructure and grain growth allowed to
continue until a limiting size was achieved. The point of this simulation was to model the usual
case in a metallurgical structure of a grain structure achieved, for example by recrystallization
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when the boundaries will rapidly pass particles, so giving a near Zener-like situation of random
boundary particle boundary correlation. Grain growth from this type of situation is that
commonly seen in metallurgical processing. The development of "ceramic-like" microstructures
with two immiscible phases mixed at a grain level with both phases allowed to coarsen has not
yet been simulated. In both the current simulations the total fraction of the particles found on all
grain boundaries, the separate fractions of particles at boundaries between 2 grains, at 3 grain

edges, and in the 3D simulation, the fraction at 4 grain corners, ¢, ¢2, ¢3, ¢4, were
continuously monitored.

Fig.4. Removal of curvature in 2D
grains with less than six neighbours by
the presence of garticlcs.

; From Hillert (1988).

3. 3D SIMULATION - SMALL INITIAL GRAIN SIZE

The technique has been previously desciibed (see Anderson 1986 and Anderson et al. (1989a
and b)) so only a very brief outline need be given. At the start of the simulation each lattice
point is given a random number Q, between 1 and 48, and then randomly selected sites have
their Q value randomly switched to a different value. The total energy of the system is
determined by assigning an energy J between any two lattice points with different Q values.
Any switch in Q that lowers the energy, or does not increase it, is accepted. The unit of time is
the Monte Carlo Step (MCS) - where 1 MCS is determined by a number of attempted switches
equal to the number of switchable lattice points. In the 3D simulation a simple cubic lattice was
used with 100x100x100 lattice points and with the first, second and third nearest site
neighbours counted as contributing an equal amount, J, to the energy of unlike neighbours.
Anderson et al. (1989a) have described the detailed studies of 3D single phase grain growth
simulation. In order to simulate the effect of second phase particles at the start of the
simulation, when the number of grains is comparable to the number of lattice points, a fraction,
f, of points were selected at random and each given a new number, Q + 1. These sites were not
allowed to switch. These sites therefor represent second phase particles particles and they were
assigned the same energy penalty, J per neighbour, as determined the grain boundary energy.
That is the simulated particle / matrix interface has tie szme inierfacial energy as the matrix grain
boundaries. The particles were not allowed to move or to coarsen. As in a real structure, when
a grain boundary moves onto a particle there is a reduction in energy of the system, eq.3.
Different volume fractions of particles were used, from f = 0.005 to f = (.16, and for each
value of f, two runs were performed to improve the statistical averaging. At early times the
mean grain volume grew rapidly at the same rate as a particle free microstructure, but as the
grains grew to a size comparable to the interparticle spacing, ( 1/f )15, the grain growth halted at
a limiting grain size, fig.5. Fig. 6 shows sections through the 3D microstructures in the
rinned state at two of the volume fractions and fig.7 shows the crucial result of how the mean
imiting grain volume V|, varies with the volume fraction, f, of particles on a log/log plot. The
dashed line in fig 7 is the empirical eq.12.

Vo'v = k/fb (12)

v is the volume of one lattice site, k =91.0+ 16.9 and b =0.922 £ 0.045. On reducing eq.
12 to zive the limiting grain radii we obtain eq.13.



Ru/r = k'/fe (13)

Here k' is found to be 4.5+ 0.8 and the crucial exponent, ¢. is 0.31 £ 0.02. v is the volume
andrthendmsofonelameepouu that is the pinning particle. This result is the expected form
of eq.10, when the qu have grown to a size equivalent to the mean particle spacing, (1/)153,
thanswnthmost o paruclesatgmnounas.ﬂellmandﬁ.ﬂm(lWS)

Fig.5. Growth of mean grain
volume versus time for different
particle volume fractions.

Fig.6. Pinned structures for
two different particle
fractions.
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This picture was partially confirmed by determination of the total fraction of particles on grain
boundaries, ¢, and the separate fractions of the particles on 2 grain faces, 3 grain edges and 4

grain comers, ¢, ¢3 and ¢4 respectively. Fig.8 shows the observed values and it can be seen
that they are much larger thar. would be expected for a random correlation of particles and

boundaries. As discussed by Anderson et al.(1989b), the values of ¢ and ¢4 expected for a
"Zener" situation of randon correlation of particles and boundaries are given by:

@ = 3r/Rp (14)
and ¢s@ = 6r3/R3 (14a)

At f= 001, when R /r = 18.2, ¢@ =0.16 and ¢42) = 0.001 compared to the measured

values of ¢ = 0.41 and ¢4 = 0.01. The high meaured values of the fraction of particles on
boundaries compared to the Zener values shows that in 3D, 1as in 2D, particle inhibited grain
growth cannot, at least in the simulations, be treated by balancing the Zener drag on a toundary
with the averge driving force for grain growth, eq.7. A better structural model is required.
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Fig.8 Fractions of the particles found at grain faces, ¢, grain edges, ¢3,

and grain corners, ¢4, and the total fraction of particles at boundaries, ¢,
in the pinned microstructures as a function of the volume fraction of
particles, f.

In the 2D case Srolovitz et al. (1984b) and Hillert (1988) have argued that the pinning
mechanism can be understood by the ability of particles to remove curvature, so that grains with
less than six neighbours but in contact with particles will not disappear, see fig 4. This is easy
to see in 2D structurcs but is mucn less transparent in 3D. Rhines and Craig(1974) in
discussing the topology of grain growth, as revealed by serial sectioning an aluminium sample,
found that the simplest smal: grains lay at the corners of 4 grain junctions and had the form of a
terahedron, fig 9a. The requirement of 120° angles at grain edges and 109.5° angles at grain
corners causes the convex sha;‘rc shown - this curvature leads to the shninkage and
disappearance of such a grain. owever if particles had pinned the 4 grain corners this will
allow the grain edges to meet at particles at ang!=s other than the required 109.5° angle. Under
these circumstances the net curvature, (1/R; + 1/R3) could be reduced to zero by a balance of
two opposite curvatures, fig 9b, thereby stabalizing such a grain against shrinkage.

Q



Fig. 9. (a) The convex shaped grain described by Rhines and Craig (1974) in
single phase grain growth. (b) Possible simiiar sized grain pinned by particles
at the grain corners showing zero net curvature.

In order to gain some further insight into this idea, the pinned grain structures in the 3D
simulations are being studied in more detail to compare with the grain structures simulated in 3D
single phase grain growth.
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Fig.10. The measured grain size distribution in a single simulation for the single phase
case, f =0, and for a pinned particle containing structure at comparable grain sizes.
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Fig.10 shows the grain radii distributions, calculated from the "obszrved” grain volumes, for
two microstructures, in fig 10a for the particle free case and in fig.10b for the pinned structure
atf=0.04. There is a significant statistical noise due to the limited number of grains (compare
with fig 11e or Anderson et al. (1989a) for a statistically smoothed version of fig 10.a.). Itis
clearly seen (i) that the pinned structure is somewhat more sharply peaked with the peak of the
distribution at values of R somewhat less than <R>, (ii) that there are markedly less very small
grains in the pinned structure and (jii) that there is a suggestion of a very few much larger
(abnormal) grains. The last observation is not yet clearly established but if it is confirmed it
would be very significant in the light of the experimental observation of abnormal grain growth
in low volume fraction particle containing material described later. The cut off at the smazll
grain size has been firmly established in the results analysed so far. The physical significance
of this cut -off seems to be that in the pinned structure all the smallest grains with R less :han
0.3 <R> have already vanished while in the still dynamically evolving single phase structure
these grains are in the act of vanishing but they wi:l then be replaced by relatively larger grains
that are in the next larger size classes. In the pinned grain structure the grains comparable to
the smallest grains in the single phase structure have vanished - but they are not being replaced
by the shrinkage of the next largest grains. This hypothesis gives the concept that normal grain
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The other aspect of the pinned microstructures that has been very recently studied is the detailed
topology of all grains with respect to their relative size, the distribution of particles at their
boundaries, edges and corners and their numbers of adjacent matrix grains. Table 1 shows
some initial results of this analysis for four of the microstructures.

Table 1. Analysis of computer simulated microstructure

f=0.0 f* = 0.005 f *= 001 f *=0.04
<V> =4,525 <V>=11111 <V>=6536 <V>=1938

Smallest V/<V> = 0.03 V/<V>=0.08 V/i<V>=0.06 V/<V=a0.10

5% of grains Nn=7.2 Nn=8.1 Nn =8.7 NN =9.1
n3=4.2 n13=59 ny =12
ng =09 ng=2 ng =9.5
Smallest V/<V> = 0.04 V/<V>=0.11 V/<V>=008 V/<V>=0.12
10% of grains NN=7.6 NN =85 Ny =9.1 Nn=9.2
n3 =47 ny=6.5 n3=13
ng = 1.1 ng=19 ng =92
Grains with
V/<V>=0.12 Nn=9.2 " Ny =10.3 "
45-55% of V/<V>=1.0 V/<V>=065 V/<V>=0.50 V/<V>=0.51
grain volume Ny =16.6 NN =136 NN =129 NN =12.6
distribution ny =122 ny =139 ny = 31.2
ng=2 ng=3.8 ng=12.5
Grains with
V/<V>=1.0 " 62-71%of grains 72-74%o0f grains
NN=16 NN =16
n3=13 ny =43
ng=2 ng=16
Largest 5%

of grains V/<V>=4-13 V/<V>=3-7 V/<V>=3-15 V/<V>=3-30
V/<V> is the mean of the ratio of the grain volume to the mean grain volume. Ny is the mean

number of neighbouring grains. n3 is the mean number of particles on grain edges. ng4 is the
mean number of particles on grain comners. f* - pinned particle containing structure.
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There are several striking points to be seen in table 1. The first is the variation in the size
distribution between the particle containing and particle free structures previously noted in
fig.10. The smallest grains seen in che single phase structure are missing from the pinned
structure and the median value of the ;inned distribution occurs at R less than <R> . The
second feature of table { is the mean number of grain neighbours shared by the smallest grain
size. This number is surprisingly largs, with 7- 9 neighbours for all the microstructures. It
might have been expected following a simple reading of the classic study by Rhines and
Cx;iﬁ(ﬂﬂ) that most shrinking grains in a single phase structure would end their lives as
tetrahedrons - this may in fact be the case but the probability of catching this transient form
appears to be negligably small. It is however significant both for the single phase and
particularly for the particle containing structures that the smallest grains are seen to be in contact
with a large numbers of larger grains. Small grains have small faces - but these small faces are
of course shared with the impinging large grains. The tension of the grain boundaries of these
external grains, as they impinge on the smallest grains, will act to slow the shrinkage of the
small grains. Another way of saying the same thing i to recognize :nat as the number of faces
increases towards 14 the curvature causing shrinkage deceases, Rhines and Craig(1974). For
the single phase case this structural feature will merely effect the kinetics of normal grain growth
but for the particle contzining structures, the ending of normal grain growth appears to take
place by inability of the smallest grai- -~ to shrink away from the high density of particles and
from the surrounding grain boundaries. The current conclusion from the early analysis of
these structures is that in 3D, as in 2D, particles are very efficient at removing the net curvature
of the boundaries - particularly at the smallest grains in the distribution. It is also apparent from
table 1 that the pinned grain structures are not seif-sir.ilar - there is a significantly hi%_t;‘er
concentration of particles at grain comers at the highest values of particle fraction, f. This

higher concentration of particles corresponds to the smaller pinned grain size with high f, eq.
13, which have a larger driving force for shrinkage.

2D SIMULATICON OF PARTICLE LI F.é) GRAIN GROWTH FROM A FINITE GRAIN
IZE

This simulation was designed to model the micrstructural evolution in deformed metals grains
which have recrystallized to a size determined by the relative rates of nucleation and growth in a
deformed microstructure. The driving force for growth in recrystallization is usually much
larger than the Zener drag, Ashby (1980), so at the end of recrystallization only random
correlation of grain boundaries and particles would be cxpecte?: see Ashby et al.(1969).
Grain growth will then continue from this structure expected to have a random correlation
between particles and boundaries. This process is readily simulated - though results so far have
been obtained only in 2D. The proceedure was to allow grain growth from the usual starting
structure of a one lattice point grain size, Srolovitz et al.(1984a), to a mean grain area usually of
40 lattice points though some larger values were also used ( 80 and 160 lattice points). Having
achieved these strarting structures with no particles, various area fractions of particles (0.0125
to 0.225) were randomly introduced into the structure ang the simulation allowed torun. A
full set of results with sufficient set of repeats to give improved statistics is not yet available but
the initial results reported here clearly show the main wends.  The values of starting grain size,
<A>,, and area fraction, f, were chosen so that the Zener analysis would for some structures

gredict grain growth while at others with higher area fractions it should not be posiblc. The
D version of eq.8 is:

R =nr/d4f (15)
A =n2a/16f2 (15a)

At <A>, = 40, eq.15b predicts no grain growth for f > 0.124. On the basis of previous
simulations, and their reanalysis, Srolovitz et al.(1984b) and Doherty et al. (1987), it was
expected that the values of the fraction of the particles on the ooundaries and at the 3 grain

edges, ¢ and ¢, should increase from the random values at the start of the second stage
simulation as grain boundaries migrated and became held-up at particles. It was, however, not
known how quickly this might happen nor what the limiting groin sizes would be.
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This is identical to that of Srolovitz et al..1984b) for the f dependency but shows a striking
increase in the Jimiting grain size directly arising from the larger smrt;;rcf grain arcas. Initial
results suggest that at larger values of 1/f the results are tending towards the original value,

eq.11 or 16a.
<A> = 29/f (16a)

As 1/f becomes larger the interparticle spacing, (1/)!/2 in 2D, becomes much larger than the
starting grain size,<A>,, 5o it would be expected that the new results should merge with eq.
11a cs f falls. However at small values of f longer times and more repeated runs are required to
give statistically valid results for the pinned grain sizes. These will be published when available.
The limiting values of ¢ and ¢ as a function of 1/f (for <A:», = 42) are shown in fig.14 ( the
largest value of 1/f shown in fig.14 is for a structure in which grain growth was still continuing

though the ¢ velues seem to have saturated. From fig.14 it can that, at small values of 1/f, the

values of ¢ are smaller than those found for <A>, = 1, With <A>, =1, ¢ fell from 0.9 at
1/f =20 to 0.86 at 1/f =100 and to 0.8 at 1/f = 200, Srolovitz et al (1984b). Both the limiting
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the product of (6h - 6) sites per grain with the number of grains Ng divided by the number of
lattice points Np. ButNg/Np = 1/ <A>,

F(b) = (6h-6) /<A> (18)

For a Zener-like random correlation of particles with grain boundaries we then obtain after
substituting <A> for A in eq.17a:

6(z) = F(b) = | (12<A> -3)172 -3}/ <A> (19)

The fraction of particles at 3 grain triple point in the random structure is readily estimated as
follows. Each hexagonal grain has 6 triple points each sourrounded ty 3 lattice points giving
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18 points but these are shared between 3 grains so giving 6 lattice "triple” points per grain.
This immediately yields, for a random correlation of particles and grain boundaries:

$3(2) = 6/<A> (20)
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Table 2 gives details of the initial starting structures and shows that eq. 19 gives close
agreement with the observed values of 9, however eq. 20 slightly overestimates the values of
¢3. Table 3 shows the details of the pinned structures and the predicted values of <A>(z), &(z)
and ¢3(z) predicted for a random coirelation of boundaries and particles.
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Table 2. Initial 2D Simulation Microstructure

<A>, f ¢ ® ¢() $:(2)
42.8 0.0125 0.48 0.10 0.46 0.14
42.6 0.0375 0.48 0.12 0.46 0.14
42.6 0.1250 .47 0.12 0.46 0.14
42.9 0.2250 0.45 0.10 0.46 0.14
77.8 0.0500 0.35 0.07 0.35 0.077
157 0.0500 0.26 0.034 0.26 0.038

Table 3. Pinned 2D Simulation Microstructure

<A> f <A> <A>(2) ¢ ® ®(2) $3(z)
42.8 0.0125 235 3940 0.78 0.25 0.21 0.025
42.6 0.0375 117 438 0.74 0.24 0.29 0.051
42.5 0.0500 97.1 246 0.72 0.26 032 0.062
426 0.1250 62.3 39.5 0.68 0.20 0.39 0.096
429 0.2250 54.0 12.2 0.63 0.13 0.41 0.110
77.8  0.0500 131.5 246 0.62 0.19 0.28 0.046
157  0.0500 209.4 246 0.40 0.115 0.23 0.029

During growth there is a rapid initial increase in the values of ¢ and ¢;. But the expected
random or Zener va.ues, eqs. 19 and 20, predict a fall as the mean grain size grows. That is
there is during the intial period of grain growth a rapid evolution in the correlation of particles
and boundaries and triple points as the boundaries move to particles and are held there - this of
course leads to a slowing in the rate of grain growth - which on an A /MCS (time) plot would be
linear if no particle inhibition of motion were present, Anderson et al. (1984). Somewhat

surprisingly, the values of ¢ and ¢; saturate much sooner than does <A>, that is grains are still
disappearing even though there is no further increase in the particle / boundary correlation. A
similar effect, though perhaps a less obvio is feature, can be noted in the original 2D particle
simulations of Sorolvitz et al.(1984b). Two processes seem to be occuring in the present study.
First there is a short period of time in which the fraction of particles on the boundaries increases
w~hile general grain growth is occuring. Thereafter there is no further increase in the fraction of
particles on the boundaries but the mean grain size continues to increase - indicating that
smallest grains, not in contact with particles, are still disappearing. Small grains not in contact
with more than 2 particles should be able to vanish, fig.4. This idea can be explored further
by use of the grain size distribution in the 2D single phase simulations, fig. 10 of Srolovitz et al
(1984a). Table 4 shows the fraction of grains, G4, that have disappeared as the grain size

grew from the original value, -<A>,, to the final value <A> seen in table 3, a is the grain size
ratio, R*/ <R>,, with R* and A* the radii and areas of the smallest class of grains present at the
start of grain growth that survives the period of particle limited grain growth and P* is the mean
number of particles in contact with or inside these critical sized grains which were all treated as
though hexagonal. P* appears to be close to the critical value of 3 - apart that is from the
extreme values of f. This failure at small f is not surprising since at the large values of 1/f the
critical sized grains that just survive will first grow to the interparticle spacing, (1/01/2, so
increasing the number of particles that they contact before they try to shrink back. The increase

in P* at large fis not however understord and may indicate that the current analysis is flawed
in some way.

A final point is worth making about the data shown in table 3. The Zener model seems to fail in
two opposite ways. At small volume fractions it underestimates the magnitude of the particle
inhibition of grain growth just as in the earlier simulations - more significantly however it also
fails when a large initia) grain size is produced and given a high density of randomly distributed
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particles. The Zener analysis predicts that there should be no grain growth - but growth is
seen. This arises since many small grains do not contain a critical number of particles to stcp
their collapse, giving a significant decease in the number of remaining grains.

Table 4, Grain Growtt Analysis

<A>, f <A> Gd a A* p*
428 0.0125 235 0.82 1.06 48 1.0
42.6 0.0375 117 0.64 0.97 39.5 2.5
42.5 0.0500 97.1 0.56 0.86 31.5 2.8
426 0.1250 62.3 0.32 0.57 13.8 4.1
426 0.2250 54.0 0.21 0.47 9.6 5.8
77.8 0.050C 131.5 0.41 0.65 59.1 3.0
157 0.0500 209.4 0.25 0.52 70.8 3.5

In conclusion, both series of simulation studies show ti.at the Zener analysis based on random
particle: boundary correlation fails and an alternative model is required. The current results
suggests that a more successful model will be one based on the effect of particles on removing
the curvature required for gram growth During growth from a very small grain it can be seen
that grams grow until the grain size is comparable to the mxerpamdc spacing, (1/)!/2 in 2D and
(1/0'A in 3D.  During growth from a finite grain size comparable to or larger than the
in icle spacing the current results suggest that those grains that contain less than & critical
number of particles about 3 in 2D will vanish. Further simulations will be required to study the
important problein of 3D growth from a finite grain size.

5. EXPERIMENTAL STUDIES IN Al-Fe

In order to provide some verification of the validity of the computer models some brief
experiments have been carried out using an Al - 0.15wt% ke - 0.07% Si alloy supplied by
Alcoa for a different research project. This alloy, after casting and hi h temperature
homogenization has a low volume fraction, f = 0.002, dispersion of coarse Al articles thut
are very stable during long hlgh temperature anneals. Such a system is 1dea ly suited to
distinguish between eqs 8 and 13. The as-cast material has been shown to have a near random
texture and was homogenized at 620°C for 24 hrs and heat treated at 450°C for 72 hours to
precipitate a fine dispersion of the cubic AIFeSi phase. Samples were then cold rolied 20,
30, 34, 40 or 60% and recrystallized at temperatures between 500°C ( 20 and 30%
deformation) to 400°C ( 60%\ for 4 hours. At these lower temperatures the AlFeSi phase pins
grain growth so the as recrv: 'lized grain size could be readily determined. The materials were
then placed in an air furnace at 620°C and held for various lengths of time - shown in table 5.
Conductivity and SEM studies showed that the fine AlFeSi phase dissolved up completely in
less than 1 hour at 620°C.  The grain size wus determined by the linear intercept method and
the results shown in table 5. An unexpected complication of this study was the ready
intervention of ahnormal grain growth gwm% isolated guge grains whose size was frequently
limited only by the specimen dlmcnswm his occured for materials rolled more that 34%
giving as recrysta.hzed grain sizes of 130 microns or less. However even with abnormal
grain growth it was sometimes possible to find a region of the sample showing a sufficient
number of matrix grains for the grain sizc of these matnix grains to be determined.

For the mean size of particles, <r> = 2um the Zener analysis predicts a pinned grain size of
1300um - very much larger than the limiting grain size seen of 200pum. The 3D computer
simulation starting at a very fine grain size predicts 62um - 3 times smaller than seen but no
correction can be made for the finite grain size effect since this has not yet simulated in 3D.
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Qualitatively this effect is expected to increase the predicted value of the final grain size but the
magnitude of the increase is at present unknown.  Attempts to avoid this difficulty by reducing
the grain size produced the abnormal grain growth effect seen.

Tablz 5. Observed grain sizes (in pm) after different times at 620°C

Reduction Rex.Temp As-Rexed 1hr 4hr 8hr 20hr 112hr
20% 500°C 280 254 274 - 270 272
30% 500°C 176 186 - - 208 -
34% 450°C 200 208 - - 220 -
40% 450°C 132 208 234 A A -
60% 400°C 85 200 A2l5 A192 A208 -

A - indicates that abnormal grain growth has occured in part or most of the sample.

The obvious first question about this abnormal grain growth is why might it have occcured?
Brief texture studies have shown that the as-recrystallized material has a very weak texture and
thc abnormal grains appear to have no special orientation with respect to the rolling geometry.
The brief review of the physics of particle drag at the start of this paper immediately suggests,
however, an attractive hypothesis. The Zener analysis leading to eq. 8, while not appropriate
for normal grain growth, should remain valid for abnormal grain growth. This process occurs
by migration of the boundaries of a few, very large grains. For abnormal grain growth, <D>
in eq.8 will be the maximum matrix grain size that should just support the growth of an
abnormal grain that was very mucn larger than the pinned matrix grain size. The pressure
balance leading to eq. 8 is precisely that required for just preventing abnormal grain growth
provided a large grain has developed. So abnormal grain growth can, on this basis, be
predicted to be possible whenever the matrix grain size is pinned by particle inhibited normal
grain growth ( eq. 13 as modified vy finite starting size effect) and when a very large grain is

present. The current data suggests that with starting grain sizes less than 140um, the required
nucleation of abnormal grain growth can take place. Initial further experiments that support
this have been carricd out by attempting to provide such a nucleus by a localized hardness
indentation. So far this has only been carried out on as-cast material (with a starting grain size

of 150um). This matenal withou: indentations usually resists abnormal grain growth except
for anneals of 1 week or more - but it always shows abnormal grain growth from indentations
after a few hours at 620°C. These tentative conclusions from this, so far very limited data,
clearly need confirmation by further experiments - but if these ideas are confirmed they could be
of very major significance in understanding the conditions for this usually undesirable process.
Limited support is provided by the observation by Calvet and Renon(1960) of abnormal grain
wth in deformed aluminium alloys when annealed at each alloy's solvus temperature ( that
is where f -> 0 ). It is an obvious question as to why, if this idea is true, that our 3D
simulations did not show this effect. Some limited indication of the possibility of abnormal
%m‘n growth was briefly described in the studies of precipitate size distributions, see also fig.6.
here is an interesting but frustrating limitation on the 3D simulations - at small volume
fractions the matrix grains are becoming comparable to the array size giving both very lon
runs and very limited numbers of grains that might act as potential nuclei. ngpcriments wi
inserted large frain nuclei in pinned 3D are therefor clearly required and are under way. Such
experiments of course failed to give abnormal grain growth in 2D, Srolovitz et al.(19885), but
given the curvature inhibiting effect of particles in 2D that failure is of course now expected.

6. CONCLUSIONS

The 3D simulations show that the limiting %rain size following normal grain growth from a
small grain size is a simple function of (1/)!3 - with a much higher than random corelation of
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particles with grain boundaries. The pinned grains had a small grain size cut-off at a higher
fraction of the mean grain size than is seen in the single phase simulations. 2D simulations
from a finite grain size showed that the limiting grain size is a strong function of both the
starting grain size as well as the particle fraction. These simulation results show that the Zener
model is seriously flawed for normal grain growth for which a better model is one based on the
ability of particles, in both 2D and 3D, to remove boundary curvature. Limited experimental
results has been obtained and these support these conclusions but show, at small as
recrystallized grain sizes and low volume fractions of particles, a ready transition to abnormal
grain growth. Such a transition can be readily understood on the basis that the Zener limit
though failing for normal grain growth is a valid model for predicting the limiting grain size that
will allow the growth of a few large grains. Further experiments and more simulations rre
required to these initial results,
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